Uncertainty of Measurement
Aws4_request&x-amz-signedheaders=host&x-amz-signature=8d19d5f7a703030d9142c391fd43200b88015359cfec956572e9e6f6c626cb3e Rhys Park
LATEST NEWS

Uncertainty of Measurement

When accuracy is critical,understanding uncertainty of measurement is important when choosing the right calibration service.

What is uncertainty?

I used to be uncertain - now I'm not so sure. In ordinary use the word 'uncertainty' does not inspire confidence. However, when used in a technical sense as in 'measurement uncertainty' or 'uncertainty of a test result' it carries a specific meaning. It is a parameter, associated with the result of a measurement (eg a calibration or test) that defines the range of the values that could reasonably be attributed to the measured quantity. When uncertainty is evaluated and reported in a specified way it indicates the level of confidence that the value actually lies within the range defined by the uncertainty interval.

How does it arise?

Any measurement is subject to imperfections; some of these are due to random effects, such as short-term fluctuations in temperature, humidity and air-pressure or variability in the performance of the measurer. Repeated measurements will show variation because of these random effects. Other imperfections are due to the practical limits to which correction can be made for systematic effects, such as offset of a measuring instrument, drift in its characteristics between calibrations, personal bias in reading an analogue scale or the uncertainty of the value of a reference standard.

Why is it important?

The uncertainty is a quantitative indication of the quality of the result. It gives an answer to the question, how well does the result represent the value of the quantity being measured? It allows users of the result to assess its reliability, for example for the purposes of companson of results from different sources or with reference values. Confidence in the comparability of results can help to reduce barriers to trade.

Often, a result is compared with a limiting value defined in a specification or regulation. In this case, knowledge of the uncertainty shows whether the result is well within the the acceptable limits or only just makes it. Occasionally a result is so close to the limit that the risk associated with the possibility that the property that was measured may not fall within the limit, once the uncertainty has been allowed for, must be considered.

Suppose that a customer has the same test done in more than one laboratory, perhaps on the same sample, more likely on what they may regard as an identical sample of the same product. Would we expect the laboratories to get identical results? Only within limits, we may answer, but when the results are close to the specification limit it may be that one laboratory indicates failure whereas another indicates a pass. From time to time accreditation bodies have to investigate complaints concerning such differences. This can involve much time and effort for all parties, which in many cases could have been avoided if the uncertainty of the result had been known by the customer.

Conclusion

Uncertainty is an unavoidable part of any measurement and it starts to matter when results are close to a specified limit. A proper evaluation of uncertainty is good professional practice and can provide laboratories and customers with valuable information about the quality and reliability of the result. Although common practice in calibration, there is some way to go with expression of uncertainty in testing, but there is growing activity in the area and, in time, uncertainty statements will be the norm.